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OVERVIEW 

The foundation of the Industrial Internet of 

Things (IIoT) is the notion that abundant 

data will be the driver of new products and 

economies by providing objective realities 

from the production and use of industrial 

equipment and systems. There are several 

misconceptions about the nature of data 

and analytics and how to approach these 

problems to achieve actionable and 

measurable results. An example is the use of 

raw data and deep learning to create 

actionable insights. This has led to a great 

deal of disillusionment in the industry when 

implementing an IIoT strategy. 

There is a general lack of understanding 

about how to characterize data and 

information and what is meant by semantics. 

The ultimate goal of any IIoT strategy is to 

provide business value. So in this article, we 

will look at the requirements from the 

perspective of the manufacturing business 

and ecosystem to understand the criteria 

that lead to actionable information and 

interoperability between industrial systems. 

We will provide an analysis of relevant 

industrial standards such as OPC/UA1, STEP2, 

EtherCat 3 , SysML 4 , and MTConnect 5  and 

differentiate between the syntactic and 

semantic standards in greater detail.  

                                                      
1 https://opcfoundation.org/ 

2 https://www.iso.org/organization/9295.html 

3 https://www.ethercat.org/default.htm 

4 http://www.omgsysml.org/ 

5 http://www.mtconnect.org/ 

These core concepts are crucial to making 

the foundational IIoT technologies and 

architectures deliver on the promises and 

provide the fabric that will enable the new 

economies and business models. Never 

begin an IIoT project with technology, such 

as Artificial Intelligence (AI), as the driver: 

Start with a business objective and then 

determine the technology and data 

requirements that achieve measurable 

results and advance one’s strategic goals. To 

illustrate the ideas, we will evaluate some 

discrete manufacturing use cases showing 

how one can deliver rapid business value 

integrating open standards from multiple 

industrial systems to create rich semantic 

context. 

THE PATH FROM RAW DATA TO 

WISDOM 

The first step is to understand the high-level 

taxonomy and the types of data that will be 

required to create actionable insights. When 

referring to data in the context of IIoT, one is 

usually referring to streaming data from 

sensors or control systems that are 

representing some characteristics about the 

real world. When one moves beyond IIoT 

sensor data, many other critical information 

models provide context and intent and are 

often overlooked. 

https://opcfoundation.org/
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Without context and intent, one is often 

inferring the validity of the outcome. In 

highly complex systems, such as 

manufacturing processes, it is nearly 

impossible to provide valuable insights into 

the systems without context. This is often a 

key component to the success of any IIoT 

solution. 

In Figure 1, we show the process of 

transforming data from a raw stream of un-

interpreted bytes to prescriptive wisdom. 

The following sections discuss each of these 

steps in detail to provide a structured 

approach to achieving valuable insights from 

data. Many of the examples are 

manufacturing-related since that is our area 

of expertise.  

RAW DATA 

Raw data is collected from the control 

systems and sensors to provide continuous 

streams of bytes from various sources. At 

this stage, it is imperative to create a 

consistent timestamp associated with each 

                                                      
6 https://en.wikipedia.org/wiki/Linear_A 

observation to enable sensor fusion during 

later stages of analysis. Sensor fusion is the 

ability to combine many disparate data 

sources to form a single stream of related 

events and assert causality between those 

events. 

The data cannot be analyzed at this point 

since even the shape and structure is 

unknown. We can think of Linear A script, as 

pictured in Figure 2. If data represented 

language, we would be seeing the shapes of 

the letters, but not yet know how to 

interpret the marks.6 

Figure 1: Data and Meaning 
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There are standards that are used to collect 

raw data from manufacturing systems. 

These are often highly deterministic field bus 

technology such as EtherCat7, Profibus8  or 

Modbus9. The data in these standards have 

little to no syntax, so another layer is 

required to interpret the data and combine 

registers to understand the structure and 

types. 

SYNTAX 

Syntax provides the data type–for example, 

integer, byte, floating point number, array or 

string – and the name – sometimes referred 

to as the tag or register. It is still unadvisable 

to analyze the data at this time since we 

have not provided meaning. To use the 

previous metaphor, we have now identified 

the letters and grouped them into words and 

identified parts of speech, but do not know 

what the words mean or the topic they are 

conveying. 

                                                      
7 https://www.ethercat.org/ 

8 https://www.profibus.com/ 

9 http://www.modbus.org/ 

 

Some standards provide a syntactic 

structure, one of the most common in the 

manufacturing space is OPC/UA 10 . It 

provides an abstract information model that 

allows for a common structure and syntax of 

the data with grouping and tagging. 

Syntactic transformation should be done at 

this stage to prevent having to provide some 

initial interpretation before it gains meaning.  

The syntactic stage can sometimes be 

indiscernible from the following semantic 

stage if one combines the semantics into a 

single functional step, such as transferring 

from the raw data to OPC/UA with the 

MTConnect semantic model layered on top. 

There is still an intermediate syntax that 

must be created, but it may not be visible to 

the user of the data. 

SEMANTICS  

Semantics creates the meaning and context 

of the data and turns it into information. 

There are many levels of context we will 

discuss, but the first is concerning to the 

“thing” or device we are collecting data 

about. Meaning requires that the specifics of 

the data be identified; for example, with 

temperature, it must be identified as a 

“Temperature,” and the units must be given, 

such as “Centigrade.” The logical device 

model must relate the piece of data to the 

logical component, such as the motor or 

amplifier, as well as the relation to the 

whole, the motor of the X linear axis (defined 

Figure 2: Linear A Script 
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as the longest linear dimension 

perpendicular to the Z axis), that in turn 

rotates around the primary spindle of the 

machine. 

When providing semantics, it is necessary to 

be specific enough that one can make sense 

of the data; this is where the metamodel 

comes in. Each piece of data is associated 

with a logical metamodel of the device or 

thing that describes the components, their 

relationships, constraints, and the data they 

can provide. This is what is meant by device 

context.  

The complexity of the analytics will 

determine the complexity of the 

metamodels. With a complete digital 

surrogate or twin of the device, it is 

necessary to have a more complex 

metamodel that may refer back to the 

geometry of the parts of an assembly and 

various systems engineering models, given 

in standards such as SysML, that provide the 

first principles expectations of their 

behavior.  

There are many ways to create semantics; 

these range from explicit – identifying the 

meaning of the data based on an 

understanding of the “thing” and its 

function; or implicate – using AI to perform 

feature recognition and classification of the 

data to determine the meaning. The 

selection of technology and methodology 

will depend on the nature of the data and if 

                                                      
11 https://www.citygml.org/ 

12 R. Kaden *, T. H. Kolbe. 2013. "City-Wide Total Energy Demand Estimation of Buildings Using Semantic 3D City 

Models and Statistical Data." ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop. Istanbul, Turkey: ISPRS Annals 

of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 

the data can be interpreted without complex 

statistical processes. 

AI and learning models will be developed at 

the predictive stages of analysis with the 

deployed models at the semantic stage to 

classify the data earlier in the pipeline. This 

approach is a typical feedback mechanism 

since the full history, and the higher-level 

context is unknown at this stage, and to do 

so would impede the performance, function 

and utility of the systems because of the 

increased overhead.  

Using standards for semantics is essential. 

One can sometimes make it to semantics 

with proprietary data, but if one does not 

use standardized semantic models at this 

stage, the value of the data will be limited to 

a single solution and most of the potential 

will be lost. Examples of semantic standards 

are MTConnect for manufacturing or 

CityGML 11  for smart cities. 12   Using 

standards will have a multiplicative effect on 

the value of the information since there is no 

way to predict the eventual use of the data 

and having an open and common meaning 

will protect the data collection investment. 

With semantics, there is still little actionable 

insight since the data lacks the context of 

additional business systems and information 

sources. The next stage interprets the data 

within the context of the use of the 

equipment. 
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DATA ENRICHMENT 

This stage relates the semantics to the 

process and use of the equipment. This is 

where we introduce the intention of the 

processes, in discrete manufacturing this is 

done by providing the device constraints, 

process plans with expected parameters and 

expected performance. The process 

constraints allow the analytics to annotate 

the information stream by comparing the 

actuals with the expectations and then 

reporting deviations.  

Value is emergent at this stage by using 

technology such as Complex Event 

Processing 13  (CEP) to recognize patterns. 

Since we know the meaning of the data, it is 

possible to place constraints on the data – 

for example, if the load exceeds a threshold 

when a tool is being used to cut a specific 

type of material, then create an event that 

indicates something may be going wrong. 

                                                      
13 https://en.wikipedia.org/wiki/Complex_event_processing 

14 Brandl, Dennis. 2008. "T061_isa95-04.pdf." 05 19. https://apsom.org/docs/T061_isa95-04.pdf. 

Enrichment can also make use of existing 

learning models. Once the semantics are 

present, it is much easier to build 

classification systems that provide more 

tangible value to the users using statistical 

analysis. Closed loop feedback can also be 

performed to alter or correct a process 

before damage or loss occurs.  

Enrichment may also introduce additional 

information models; these are often static 

models that describe the expectations for 

the execution of a process and information 

relating to the localized process 

verification14. These additional information 

models allow the analytics at this early stage 

to gain a larger perspective and make 

judgments about the outcome and the 

operation of the equipment. 

Figure 3 illustrates the engineering 

predictions regarding a manufacturing 

Figure 3: Comparison of simulated data for part build generated by Mastercam compared to actual machine data. Note: The X-

position of each dataset has been translated for ease of comparison. The vertical scales are consistent with both datasets. 
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process compared to the actual execution. 15 

As one can see, there is a significantly longer 

amount of time required to make the part 

than predicted, especially concerning the 

movement between angular fins (C). If this is 

anomalous behavior, the operation can be 

flagged as suspect and an analysis can be 

performed to determine why the deviation 

occurred. From the display, the engineering 

estimates are grossly optimistic.  

One caveat is that at this stage the data is 

still point-in-time observations about the 

device and the analysis has a very limited 

amount of history, only enough to provide 

the running statistics that are used for 

categorization, signal processing and trend 

analysis, as well as comparisons to other 

static information models. The time horizon 

                                                      
15 William Bernstein, Thomas Hedberg, Allison Bernard Feeney. 2017. "Toward Knowledge Management for Smart 

Manufacturing." Journal of Computing and Information Science in Engineering 17 (3): 23 

of enrichment is often minutes to hours, but 

long-term trend analysis and model creation 

are left to the predictive stage. 

INTEGRATION AND ECOSYSTEM 

The ecosystem integration connects the 

enriched and semantic information to the 

business systems, allowing for actions to be 

taken that have a larger scope than a piece 

of equipment and evaluate the impact on 

delivery and revenue. When integrated to 

the scheduling and resource management 

systems, jobs can be rescheduled to work 

around equipment failures or changes to 

process plans resulting from feedback from 

execution. Data enrichment is still device- 

and process-centric when the information is 

integrated into the business ecosystem, 

systemic changes can be made, repair tickets 

Figure 4: ISA-95 Levels 
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issued, engineers dispatched and processes 

relocated. 

Standards that are useful for ecosystem 

integration include ISA-95 16  or its 

implementation in XML by MESA, B2MML17. 

In Figure 4, ISA-95 presents a layering system 

that provides a logical separation of 

functionality for industrial manufacturing 

processes. 18  From a data perspective, the 

first four stages map to layers 0 through 2 

and the ecosystem map to layers 3 and 4.  

ISA-95 provides semantic information 

describing the requirements, resources, 

personnel and delivery of the job or order. 

When combined with IIoT data, ISA-95 

enables dynamic feedback to verify that the 

intended process outcome matches the 

execution and enables increased stability 

and performance by informing design, 

engineering and planning. 

PREDICTIVE 

The previous stages provide information 

that is reactive to situations that have 

occurred but are not attempting to look into 

the future and predict outcomes or prevent 

problems before they occur. This stage 

begins to build the analytical models that will 

look into the future and extend the time 

horizon for problem avoidance. 

Predictive analytics requires an 

understanding of the cause and effect 

related to the semantic and enriched data 

when combined with the business 

                                                      
16 https://isa-95.com 

17 http://www.mesa.org/en/B2MML.asp 

18 Brandl, Dennis. 2008. "T061_isa95-04.pdf." 05 19. https://apsom.org/docs/T061_isa95-04.pdf. 

ecosystems to understand the impact and 

the outcomes of the processes. Predictive 

analytics also requires a statistically 

significant amount of history to correlate the 

execution with the expectations and 

interpret feedback from the operators who 

provide comments about the outcome. This 

determines the relationships and training 

sets to construct the statistical models for 

classification at the earlier stages with 

machine learning or deep learning. 

Predictive analytics can also provide 

machine health-related events to remove 

machines from certain activities before they 

result in delays and loss of revenue. For 

predictive analytics to be effective, there 

must be adequate context to understand 

how the information relates to the 

equipment, process and business, as well as 

the intended results.  

Predictive models are often used with 

simulations to create what is now being 

called digital twins or surrogates. The 

predictive models are commonly 

constructed using first principle engineering 

models (if standards are used, they are 

provided in SysML) to describe the expected 

behavior. A digital twin also represents a 

process or a product and a piece of 

equipment. IIoT data is used to refine the 

first principles models based on actual 

observations. 

Predictive models can also be deployed in 

the enrichment stage local to the 



The Path from Data to Actionable Information as a Driver for the Industrial Ecosystem   

IIC Journal of Innovation - 9 -  

equipment. For example, predictive 

vibration analytics can find a pattern for 

undesirable vibration when a machine is 

making a 20mm slot in steel with a 40mm 

endmill having three cutting items and 

rotating at 2500 RPM. The analytics will be 

continually refined as more data is collected 

and the model is improved. This update cycle 

allows the local systems to continue 

functioning and ensure safety even if they 

are not able to communicate with other 

parts of the ecosystem. 

Prediction is often referred to as knowledge 

since one is building models that are 

capturing the causality relating to the 

objective truth. It has the potential of adding 

tremendous value to the manufacturing 

processes since it allows for the avoidance of 

loss and reduces unexpected process 

disruptions. With surrogate models and 

simulations, first principle models can be 

calibrated to the reality of the actual 

manufacturing execution and become more 

prescriptive. 

PRESCRIPTIVE 

Following from predictive analytics, focusing 

on avoidance of problems before they occur, 

prescriptive analytics allows the system to 

avoid problems by predicting future 

outcomes and working around situations 

that are highly likely to cause problems or 

determining best practices. Examples of 

prescriptive analytics are technologies that 

prescribe optimal process parameters when 

using certain tools to cut a feature in a 

certain material, in this case, the information 

                                                      
19 http://www.ap242.org 

will inform the Computer Aided 

Manufacturing (CAM) engineers to better 

specify how tooling is used. One can also 

prescribe optimized material flows at the 

enterprise scale to increase on-time delivery 

and machine utilization. Maintenance 

strategies can be significantly improved by 

prescribing when repairs should occur based 

on the machine capabilities and the required 

activities in the job queue. 

Prescriptive analytics avoid losses before 

they occur. By combining the IIoT 

information streams with the intent-based 

models of the product geometry and 

inspection plans, the causality of decisions 

and impact on outcomes can be better 

understood. The eventual goal is to get to a 

level of prescription where the outcomes 

can be forecast to the extent that on-

demand scheduling can adapt to rapid 

changes in product requirements and new 

orders, down to individual parts. 

As with predictive models, the prescriptive 

models will be created using large amounts 

of historical data. The models will be 

updated as they are refined and better 

predictions become available. The standards 

that are currently applicable to the 

prescriptive analytics are SysML for system 

engineering, STEP, specifically AP-242ed219 

for solid model geometry and GD&T as well 

as QIF for quality reporting and statistics. 

Models like AP-238 or STEP-NC can also be 

used to provide the expected execution 

stage models to compare the engineering 

intent. 
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Prescriptive analytics is often referred to as 

wisdom because they transition the 

analytical process from reactive to proactive 

and allow systems to make judgments based 

on historical evidence and learning. When 

prescriptive AI models are utilized at the 

enrichment stage of analysis, they can create 

self-aware, self-organizing equipment that 

can dynamically orchestrate to perform 

complex tasks without involving the 

ecosystem; the ecosystem, in this case, is 

providing high-level business requirements. 

CASE STUDIES 

OVERALL EQUIPMENT EFFECTIVENESS (OEE) – HOW 

TO MAKE IT A VALUABLE KPI USING TRUEOEE™ 

OEE is one of the most common key 

performance indicators (KPI) manufactures 

used to improve processes and equipment 

use. The Association for Manufacturing 

Technology (AMT), the trade association for 

the machine tool builders, set out to define 

how OEE was to be computed for their 

membership, specifying that OEE is to be 

used as a benchmarking and continuous 

improvement metric, not as a way to 

compare machines from different builders. 

AMT published the standard methodology to 

calculate OEE for discrete manufacturing in 

the Production Equipment Availability report 

(now at edition 4) in 201120. They define OEE 

as follows:

 

𝑂𝐸𝐸 = 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ×  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ×  𝑄𝑢𝑎𝑙𝑖𝑡𝑦 × 100 [1] 

Where the terms are defined as follows: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑡𝑦 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒
 [2] 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑖𝑚𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑖𝑚𝑒
 𝑜𝑟 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡

𝑇𝑎𝑟𝑔𝑒𝑡 𝑂𝑢𝑡𝑝𝑢𝑡
 [3] 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =  
𝐺𝑜𝑜𝑑 𝑃𝑎𝑟𝑡𝑠

𝐼𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑃𝑎𝑟𝑡𝑠
 [4] 

  

                                                      
20 The Association for Manufacturing Technology. 2011. Production Equipment Availability (Edition 4). McLean, VA, 

https://goo.gl/hAqg7W 
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The OEE metric [1] is structured so that a 

one-hundred percent OEE is an impossible 

target that can never be achieved because it 

represents perfection. In a well-run discrete 

manufacturing enterprise, the correctly 

computed OEE is usually in the range of 

thirty to forty percent. In high volume low 

mix production, such as automotive parts, 

OEE has been measured as high as eighty 

percent. When a company reports an OEE 

metric over ninety percent, one should view 

that number as suspicious; when OEE is 

greater than one-hundred percent, the 

targets are invalid, and the number has no 

meaning and therefore is not actionable. 

There is only one factor, Overall Availability 

[2], that has been consistently measured 

accurately and objectively. In the following 

section, we will discuss each factor and how 

to accurately compute OEE using IIoT data 

and the methodologies outlined in the 

previous section. This approach has yielded 

a much more valuable KPI, and that has been 

effectively used in-process improvement. 

 

OVERALL AVAILABILITY 

The first factor is defined by slicing time into the following categories, as defined by AMT in Figure 

5: 

  

Figure 5: Chart of Equipment Availability Parameters 
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Production time can be further broken down into the following categories in Figure 621: 

 

Figure 6: Production Time 

To categorize time, one needs to understand 

the equipment’s current operation states 

and when essential work is being done 

necessary to producing parts, even if it is 

ancillary to the production process. One 

should start by getting as much data from 

the controller as possible, use proprietary 

APIs or binary signals from PLC terminal 

blocks. The data must be translated into a 

timestamped stream of tagged values. 

The next phase translates the data from the 

tag value pairs to the MTConnect standard 

by taking the tagged data and converting 

units and determining standardized machine 

states. After the semantic conversion, rules 

can be applied to multiple machine vendors 

and models. Sensor data can be analyzed to 

identify anomalous conditions and translate 

the conditions into MTConnect semantics 

using machine learning. 

The initial categorization is done during the 

enrichment stage where the semantic data 

are matched with patterns that indicate 

production, repair, setup and non-

productive. At the next stage, ecosystem 

integration with MES gives the plant 

schedule to determine if the machine is 

operating when it was scheduled to be 

operating; allowing one to discern Plant 

Operating Time, Scheduled Operating Time 

from Potential Production Time and 

compute Delay Time as well as Lost 

Production time, which is the Production 

Time minus the Potential Production Time.  

QUALITY 

The quality metric [3] is often ignored in 

discrete manufacturing since most 

manufacturing processes have multiple 

steps and inspection is often performed at 

the end. There are problems attributing the 

quality slip to the device and process step 

since there are many operations that create 

a single feature; it is often impossible. In 

most OEE systems, quality is reported at 

100%, unless a capability exists at the 

machine to report scrapped parts or the 

operator identifies bad parts and enters the 

data manually. 

Processes must be verified at each step for 

OEE to work properly. When we increase the 

part mix and variation, it is even more 

imperative that every step is verified. The 
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value of in-process verification is much 

greater than getting a more accurate OEE 

metric: It is also the primary feedback 

mechanism to create the predictive and 

prescriptive AI models. Quality Information 

Framework (QIF) and MTConnect combined 

with AP-238 (STEP-NC) have demonstrated 

how this can be done using standards. 

PERFORMANCE EFFICIENCY 

Performance [4] is the most abused of the 

three factors. The numerator of the 

performance equation, the planned process 

time, is an engineering estimate that is often 

exaggerated to increase the OEE metric.  For 

example, engineering may say the process 

takes 30 minutes, but the actual time to 

execute the process is 15 minutes. This will 

lead to a 2.0 factor for this metric. If the 

availability of the equipment is 60% and the 

performance is 200%, then the resulting OEE 

using these two metrics will be 120% since 

the quality factor is often 100%. 

The correct way to compute performance is 

to baseline the process for a period and to 

determine the fastest time to execute under 

the best conditions. Measurement must also 

be performed on a continuous basis: It 

cannot be subject to a spot inspection since 

the results will not be realistic.  

Using data from equipment, we have found 

the optimal process performance by historic 

data analysis. There is additional complexity 

when considering high part mix processes. 

The solution to high mix is to analyze the 

process down to each micro-planned step 

since each part is the aggregate of many 

smaller processes that are combined create 

an outcome. 

By using AI, one can find equivalencies and 

analyze similar features using historical 

precedence. When combined, these can 

generate an optimal performance 

benchmark, for even a single, one-off part. 

The collection and classification of 

production time occur during enrichment 

stage, and the comparison to baseline will 

occur in the ecosystem integration where 

the current time accounting will be 

compared against the target using the 

benchmark created by combining the 

process plan and historical information in 

prescriptive analysis. 

 

TOWARDS PRESCRIPTIVE OPERATIONAL EFFECTIVENESS 

The prior discussions began leading to the improvement of OEE to be a useful KPI and allow for 

correct attribution of quality, availability, and performance to each process step. By utilizing this 

metric and the additional data collected, optimizations can be made to the process while still 

meeting quality and schedule targets.  

The methodology as described above will also allow for a more prescriptive approach to 

performance and quality by combining historical observations with predictions in a continual 

refinement process that can work across high part mix and variability. OEE done in this way can 

be used to prescribe process flow and manufacturing tasks to get optimal effectiveness from 

equipment.  
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GRINDING WHEEL ANALYTICS 

We needed to determine why there was high variability in grinding wheel performance and life 

in centerless grinding as illustrated in Figure 7. Grinding wheels have a limited lifecycle and need 

to be resurfaced periodically, called dressing, to restore the cutting surfaces. The wheels 

eventually wear to the point they need to be replaced. Wheel changes were observed to be 

occurring between 150 and 1200 parts, where the process target was given at 200 parts. The 

larger runs did not necessarily create more bad parts. 

The objective of the study was to analyze data from the grinders and determine the optimal 

wheel change and maintenance intervals and what the contributing factors were that led to the 

outcomes.  

The project started off by analyzing load data collected from the machine-this was mapped from 

the spindle load sensor to the MTConnect standard. The initial data gathering is illustrated in 

Figure 8. 

Figure 7: Centerless Grinding 

Figure 8: Load Sensor Data 
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The raw data, Figure 8, is almost unintelligible because of the high frequency fluctuations in the 

load over a large number of parts and machine cycles. The controller data is also translated into 

MTConnect and the machine states are used to identify the periods of time the machine is 

engaged in grinding a part. This is illustrated in Figure 9 where data are constrained to these 

periods (the colors only indicate a change of parts). 

In Figure 10, we compose the loads with the process periods and utilize some statistical analysis 

and signal processing during data enrichment, we are now able to recognize the load patterns 

and begin to identify periods when the loads are increasing in an orderly fashion (right-hand side) 

and in a highly variable way (left). The wheel changes are identified as bands, where each color 

change indicates a new wheel. 

The enrichment process will also identify the process parameters used as well as the dressing 

cycles to compute the frequency and duration against the process plan. When the process is not 

being performed correctly, the ecosystem integration will feedback the anomaly to the process 

planning and maintenance systems indicating something is wrong with the machine or the wheel.

 

  

Figure 9: Individual Production Bands 

Figure 10: Loads Composed with Wheel Changes 
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PREDICTIVE 

Predictive analytics can be deployed using a 

low latency feedback loop to stop or correct 

process parameters if the grinding wheels 

are not being used optimally. The possible 

causes are as follows: 

 dressing cycles are not being done at 

the correct frequency,  

 accommodation of material or wheel 

differences, or  

 there is maintenance to be performed 

on the machine. 

Tool management systems will also utilize 

the insights to correlate variations in the 

wheels to the lot and manufacturer. This 

takes the customer from reporting on what 

was happening in the manufacturing process 

to predictive analytics to identify potential 

problems. 

These alerts created by defining models that 

can live at the enrichment stage of data 

analysis are created by analyzing historical 

data from multiple streams and joining it 

with requisitioning of material and wheels to 

the process and geometries being operated 

upon. The result is the ability to stop 

processes before a wheel or part is 

damaged. 

PRESCRIPTIVE 

Prescriptive analytics allows us to take this 

one step further and knowing the wheel 

manufacturer, the machine, the wear on the 

machine and the material being ground: The 

system can determine the optimal process 

parameters to get maximum life and 

performance out of the equipment and 

tooling.  

This then becomes the operational recipe 

that is used for the execution of the process. 

The prescribed process can be verified with 

low latency feedback to ensure it is being 

executed correctly. Prescriptive models also 

allow us to build digital twins of the process 

and simulate the outcome to a greater level 

of accuracy. 

RESULTS 

In production, our experience with this 

methodology has allowed the customer to 

gain between 10% and 52% savings based on 

prescriptive process parameters and 

verification of correct process execution. 

The savings are illustrated in Figure 11. 

The MTConnect standard was used in this 

project to collect the machine tool and load 

sensor data. The controller was a FANUC 

controller and the syntactic transformation 

was done first with an MTConnect adapter 

from FANUC’s FOCUS2 protocol to the data 

as key/value pairs and then into the 

MTConnect semantic standard. The 

remaining stages were performed using 

proprietary technology for the statistical 

analysis (many open source technologies 

Figure 11: Grinding Process Improvement 



The Path from Data to Actionable Information as a Driver for the Industrial Ecosystem   

IIC Journal of Innovation - 17 -  

were used, such as R to find optimal 

solutions). 

CONCLUSIONS 

The process of taking data from a raw, 

proprietary format to prescriptive wisdom 

requires a set of transformations and 

analytics that adds meaning and context at 

every step. As with any good architecture, 

the process splits the responsibilities into 

multiple composable stages, as illustrated in 

Figure 1: Data and Meaning, where each 

stage adds capabilities and value to the 

business and helps achieve measurable 

outcomes. 

In many implementations, some of these 

stages will be combined into a single step, 

but even when that is done, the 

intermediary transformations and analytics 

are hidden in a common component. We 

have found that in most cases, these stages 

of data analysis must occur and, when put 

into a framework, it is easier to reason on 

each step in the process separately and 

create a more flexible system. 
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