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INTRODUCTION 

Finding the “because” behind certain 

business or operations events has always 

been a key part of any engineering, 

maintenance or operations manager’s job in 

industrial businesses. “The First Stage 

compressor failed because…” or “the supply 

tank ran dry because…” are common 

phrases in maintenance and operations 

departments in industrial businesses. 

Finding the “because” traditionally relies on 

experienced engineers that can interpret 

event, contextual and temporal data to 

deduce the likelihood of specific factors 

causing others in either a negative or 

positive way. 

Knowing the real root causes of events is 

critical to resolving problems rather than 

continuously dealing with the symptoms. It 

resulted in popular, formalized approaches 

such as “Root Cause Analysis,” or RCA as it is 

generally known. The challenge is that there 

are often multiple causal factors for these 

events, and finding the one “root cause” 

may not always be possible. Understanding 

other causal factors that may influence the 

outcome of industrial processes and the 

behavior of equipment need to be 

considered.  

Au Sable, in collaboration with XMPro, 

developed an algorithmic, artificial 

intelligence-based, approach for “Reliable 

Causal Analytics” (rCA) in industrial IoT 

applications. This article demonstrates: 

 It is possible to perform Reliable Causal 

Analytics using industrial IoT data and 

Artificial Intelligence (AI) to determine 

causality of business and operational 

events such as equipment failure or 

operational issues 

 How Reliable Causal Analytics provides 

data-driven decision support for 

traditional Root Cause Analysis 

approaches 

 The approach to embed this causal 

analytics methodology in IoT Process 

Management software to be able to 

perform this in a repeatable and 

automated manner. 

rCA is the result of many years of research 

and application of causal analytics in real-

world scenarios. Through this, Au Sable 

developed rCA that enables cause and effect 

relationships to be identified from sensor-

driven data and made known to the analyst 

(e.g. wear on part #105 has causally 

impacted the performance of device #65 

with a causal coefficient of 0.86), as well as 

correlation relationships in the data.  

This means: 

 the risk of making false decisions about 

what were, or will be predictively, the 

causal drivers of an effect is reduced, 

and  

 the potential for costly or disastrous 

mistakes is thereby reduced. 

This article provides background on 

traditional Root Cause Analysis and the 

evolution of Causal Analytics. It 

demonstrates how to automate the 

analytics to scale with an IoT Process 

Management platform and how it is applied 

in an industrial application. It provides a 

practical example of Reliable Causal 
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Analytics (rCA) applied to a floating 

production storage and offloading (FPSO)1 

vessel for an Oil & Gas company.  

Crude oil, gas and water from the reservoir 

are separated on board the FPSO. Oil is 

stored on the facility in six pairs of tanks, 

before export to trading tankers. The vessel 

is designed to store 1.4 million barrels of oil 

and processes approximately 170,000 

barrels of oil per day (bopd). 

Example Floating Production Storage and Offloading Vessel  

 

Au Sable’s rCA has functioned in intelligence, 

defense and anti-terrorism applications for 

many years.  The solution described in this 

article is the combination of advanced IoT 

Process Management software from XMPro 

and the rCA AI software from Au Sable.  

                                                      

1 Floating production storage and offloading https://en.wikipedia.org/wiki/Floating_production_storage_and_offloading  

2 http://asq.org/learn-about-quality/root-cause-analysis/overview/roots-of-root-cause.html  

3  Wilson, Paul F.; Dell, Larry D.; Anderson, Gaylord F. (1993). Root Cause Analysis: A Tool for Total Quality Management. 

Milwaukee, Wisconsin: ASQ Quality Press. pp. 8–17. ISBN 0-87389-163-5. 

4 Adapted from https://en.wikipedia.org/wiki/Root_cause_analysis (classification) 

ROOT CAUSE ANALYSIS BASED ON 

CORRELATION DOESN’T WORK IN 

THE IOT ERA 

Industrial RCA Background 

Formal Root Cause Analysis for industrial 

applications started with the Total Quality 

Management (TQM)2 movement advocated 

by Deming in Japan in the late 1980’s and 

early 1990’s. 

Paul Wilson et al3 described the root cause 

analysis process for Quality Management in 

detail during the TQM era. “Root cause 

analysis is a method of problem-solving used 

for identifying the root causes of faults or 

problems. A factor is considered a root cause 

if removal thereof from the problem-fault-

sequence prevents the final undesirable 

outcome from recurring; whereas a causal 

factor is one that affects an event's outcome, 

but is not a root cause. Though removing a 

causal factor can benefit an outcome, it does 

not prevent its recurrence with certainty.” 

Even though root cause analysis formally 

originated in TQM, it finds many applications 

in industrial environments:4  

 Safety-based Root Cause Analysis 
arose from the fields of accident 
analysis and occupational safety and 
health. 

https://en.wikipedia.org/wiki/Floating_production_storage_and_offloading
http://asq.org/learn-about-quality/root-cause-analysis/overview/roots-of-root-cause.html
https://en.wikipedia.org/wiki/Root_cause_analysis
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 Production-based Root Cause Analysis 
has roots in the field of quality control 
for industrial manufacturing. 

 Process-based Root Cause Analysis, a 
follow-on to production-based RCA, 
broadens the scope of RCA to include 
business processes. 

 Failure-based Root Cause Analysis 
originates in the practice of failure 
analysis as employed in engineering 
and maintenance. 

 Systems-based Root Cause Analysis 
has emerged as an amalgam of the 
preceding schools, incorporating 
elements from other fields such as 
change management, risk 
management and systems analysis. 

Root Cause Analysis became popular as an 

approach to methodically identify and 

correct the root causes of events instead of 

addressing symptomatic results of these 

events. The objective of root cause analysis 

is to prevent problem recurrence. Some 

popular root cause analysis techniques 

include “Five Whys” and Cause and Effect 

(Fishbone) diagrams. These techniques rely 

on human interpretation of event 

information and data and require 

experienced practitioners to conduct the 

analysis. It is often limited to a few critical 

production assets as the manual process is 

time-consuming and laborious. Wilson’s 

distinction between root causes and other 

causal factors provides some guidance on 

the application of causal analytics in an IoT 

context for this article. Traditional 

techniques focused only on finding the root 

causes through manual review. Modern 

techniques such as rCA described in this 

article, combined with IoT data and 

advances in AI, enable engineers to not only 

assess root causes, but also find other causal 

factors. These causal factors may not lead to 

equipment or process failure but may still 

impact equipment or process performance.  

Recent advances in cloud computing and AI 

provide the necessary infrastructure to 

analyze event data for IoT and other sources 

at massive scale. This means analysts can 

have a more expansive view of causal events 

rather than a reductionist view where the 

scope of an analysis is limited to what a 

human can process. 

MOTIVATION FOR DATA-DRIVEN, 

RELIABLE CAUSAL ANALYTICS 

There are three main reasons to find a 

reliable, data-driven approach to finding 

root causes and causal factors for equipment 

failure and operational performance in 

industrial environments: 

 Aging workforce and a large number 
of experienced engineers retiring soon 

 Complexity of equipment, making it 
harder to troubleshoot 

 Inaccuracy of Root Cause Analysis 

Retiring Workforce 

With a retiring workforce in many industrial 

sectors, the experience needed to conduct 

meaningful RCAs is decreasing. As much of 

the traditional approaches rely on 

observational analysis, the number of 

experienced engineers that can provide 

reliable analysis is fast reducing. 

According to a January 2017 assessment by 

the US Department of Energy, 25% of US 

employees in electric and natural gas utilities 
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will be ready to retire within 5 years5. The US 

Department of Labor also estimates that the 

average age of industry employees is now 

over 50 and up to half of the current energy 

industry workforce will retire within 5-10 

years.6   

Manual RCA requires the combination of a 

rigorous methodology, fault analysis 

technology and experience to evaluate the 

possible causes of business events such as 

equipment failure, quality problems or 

safety incidents. Much of the expertise 

needed will be lost with the retiring 

workforce. A data-driven, algorithmic 

approach provides a viable replacement for 

the experience of people to determine 

causal relationships between business 

events. 

Complexity of Industrial Equipment  

As industrial equipment becomes 

increasingly sophisticated 7  and more 

complex, the ability to perform diagnostics 

becomes increasingly more difficult. As 

equipment becomes more complex and 

sophisticated, the number or combinations 

and permutations of potential causal factors 

for certain events increases exponentially. It 

follows a similar pattern to Metcalfe’s law8 

                                                      

5 U.S. Department of Energy, Quadrennial Energy Review (QER) Task Force report second installment titled “Transforming the 

Nation’s Electricity System.” Chapter V: Electricity Workforce of the 21st-Century: Changing Needs and New Opportunities. 

January 2017. Retrieved from https://energy.gov/epsa/initiatives/quadrennial-energy-review-qer  

6  U.S. Department of Labor Employment and Training Administration “Industry Profile – Energy.” Retrieved from 

https://www.doleta.gov/brg/indprof/energy_profile.cfm  

7 Challenges To Complex Equipment Manufacturers: Managing Complexity, Delivering Flexibility, and Providing Optimal Service 

http://www.oracle.com/us/solutions/046249.pdf  

8 Metcalfe's law https://en.wikipedia.org/wiki/Metcalfe%27s_law  

9 The problem with root cause analysis http://qualitysafety.bmj.com/content/26/5/417  

for telecommunication devices that states 

“the effect of a telecommunications 

network is proportional to the square of the 

number of connected users of the system 

(n2)”.  

Metcalfe’s law, now also used in economics 

and business management, provides some 

quantification of the impact of the increasing 

complexity of equipment to troubleshoot 

potential causal relationships between 

operational events.  

Inaccuracy of Root Cause Analysis 

Root Cause Analysis gained popularity in 

industrial and other sectors such as 

healthcare. One of the main challenges that 

emerged centers around the fact that it 

requires facilitation and analysis by people 

who can process only limited amounts of 

information. People are also susceptible to 

opinions and organizational influences such 

as politics. Peerally 9  et al describe the 

problem with Root Cause Analysis with these 

8 main challenges: 

 The unhealthy quest for “the” root 
cause 

 Questionable quality of RCA 
investigations 

 Political hijack 

https://energy.gov/epsa/initiatives/quadrennial-energy-review-qer
https://www.doleta.gov/brg/indprof/energy_profile.cfm
http://www.oracle.com/us/solutions/046249.pdf
https://en.wikipedia.org/wiki/Metcalfe%27s_law
http://qualitysafety.bmj.com/content/26/5/417
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 Poorly designed or implemented risk 
controls 

 Poorly functioning feedback loops 

 Disaggregated analysis focused on 
single organizations and incidents 

 Confusion about blame 

 The problem of many hands 

Many of these are as a result of the 

subjective nature of the people doing 

analysis and can be addressed with a more 

objective, data-driven approach.  People 

can’t process all the potential data sources 

of event and contextual information. 

Modern advances in data, stream and event 

processing address some of that challenge 

and AI provides a means to make sense of 

the data at scale. It removes the reliance on 

the subjective nature of human analysis and 

opens the opportunity to analyze fact-based 

information at scale to derive insights.  

The unhealthy quest for “the” root cause 

further describes a challenge that can be 

better addressed with an algorithmic 

approach to Root Cause Analysis. Peerally 

states that “the first problem with Root 

Cause Analysis is its name. By implying—

even inadvertently—that a single root cause 

(or a small number of causes) can be found, 

the term ‘root cause analysis’ promotes a 

flawed reductionist view.”  

An algorithmic approach often provides 

more potential causal factors, their 

                                                      

10 How does business analytics contribute to business value?  https://onlinelibrary.wiley.com/doi/pdf/10.1111/isj.12101  

11 The Age of Analytics: Competing in a data-driven world 

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/The%20age%2

0of%20analytics%20Competing%20in%20a%20data%20driven%20world/MGI-The-Age-of-Analytics-Full-report.ashx  

relationship to each other and the strength 

(causal coefficient) of the relationships. It 

offers additional insights into events and 

often finds causation that may be 

counterintuitive to the views of the people 

that do it manually. An algorithmic approach 

also provides repeatability and scale. It will 

analyze the IoT and contextual data in a 

consistent way that is independent of the 

person performing the analysis.   

USING CAUSAL ANALYTICS TO 

PERFORM ALGORITHMIC ROOT 

CAUSE ANALYSIS 

Correlation is Not Causation 

In this era of big data, it is commonly said 

that data analytics is a prime driver of value 

to enterprises10. This is true, but only if the 

analytics performed across the data are well 

grounded methodologically and perform 

well and efficiently to derive the value. 

Big data creates big and complex data 

volumes. This is of limited value however, if 

it is not accompanied by the best available 

analytics to enable the most valuable, 

accurate and reliable decisions to occur11 . 

Hence, there is an increasing requirement 

for the analytics component in industrial IoT 

solutions to be fast, reliable and accurate to 

identify the problems and opportunities and 

https://onlinelibrary.wiley.com/doi/pdf/10.1111/isj.12101
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/The%20age%20of%20analytics%20Competing%20in%20a%20data%20driven%20world/MGI-The-Age-of-Analytics-Full-report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/The%20age%20of%20analytics%20Competing%20in%20a%20data%20driven%20world/MGI-The-Age-of-Analytics-Full-report.ashx
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ensure that such problems are addressed 

correctly and urgently.  

Correlation of events and systems is often a 

starting point for problem-solving in 

industrial environments but “correlation is 

not causation”12. Correlation helps to point 

the way, helps indicate what might be 

candidate causative or driving factors for 

some particular effect yet keeping in mind 

that correlation is simply a measure of 

association not causation.  

Introductory statistics courses tell us that it 

is not possible to prove causation unless one 

conducts an experiment whereby treatment 

and control groups are randomized. 

This is totally correct but is just not feasible 

to conduct an experiment in 99% of real-

world situations. Algorithmic methods have 

a probabilistic and contributory approach – 

spurred on by big data’s need for 

empirically-based data-driven decisions – to 

answering questions about what caused 

what or will. For example, a causal 

coefficient of 0.83 of X as a causative 

influence on Y, does not mean that X is 

necessarily the sole cause of Y (there may be 

multiple causes) nor does it always cause Y. 

X is identified however as a contributory 

cause of Y. Similarly, smoking is a 

contributory cause of lung cancer; it is not 

                                                      

12 Correlation does not imply causation https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation  

13 Attaining IoT Value: How To Move from Connecting Things to Capturing Insights 

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/iot-data-analytics-white-paper.PDF  

14 The IoT’s Potential for Transformation http://e.huawei.com/en-

sa/publications/global/ict_insights/201703141505/focus/201703141643  

the sole cause, nor does it always cause the 

effect. 

Correlations can be misleading. Valuable 

results and insights are often found, but the 

correlation methods upon which decisions 

are made mean that risks are inherent and 

could lead to mistaken or sub-optimal 

decision-making and outcomes. 

The chief analytics tool of most industrial IoT 

analytics vendors is correlation. Most 

sensor-driven data (IoT and machine-

generated logs) is analyzed using a proven 

but older form of statistical methods (even 

when operating within a machine learning 

framework). Correlational methods are the 

dominant form of analytics. 

Some examples from IoT vendor 

publications and websites demonstrate this 

approach: 

1. Cisco (Attaining IoT Value): …enable 
the company’s customers to perform 
real-time data correlation and, as a 
result, quickly react to irregularities13 

2. Huawei (‘The IoT's Potential for 
Transformation’): …enables 
correlation-based process and 
productivity improvements.14 

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/iot-data-analytics-white-paper.PDF
http://e.huawei.com/en-sa/publications/global/ict_insights/201703141505/focus/201703141643
http://e.huawei.com/en-sa/publications/global/ict_insights/201703141505/focus/201703141643
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3. ThingWorx's capabilities make it 
possible for users to correlate data, 
deriving powerful insights…15 

4. Siemens PLM: …quantitative 
statistical relationships to real-life 
usage, called customer correlation16 

5. Industrial Internet Consortium: 
…common issue in IIoT systems is 
correlating data between multiple 
sensors and process control states17 

Correlational methods are established as 

powerful aids to decision-making as is 

witnessed in the rise of platforms that 

provide the capability. Correlations often 

vary such that at a given time one entity and 

another may be positively related and at 

other times only weakly related or not at all. 

There is no fact-based causal coefficient that 

describes the strength of potential causal 

relationships. 

The lack of stability in correlations indicates 

complexity in the relationships and the 

presence of a dynamical system (common in 

IIoT). This results in variability according to 

the system state and nonlinearity in system 

behavior. It means that traditional statistical 

methods, correlation included, have 

limitations for obtaining precise analytics 

and improved decision making about 

performance in IIoT. 

                                                      

15 A survey of IoT cloud platforms https://www.sciencedirect.com/science/article/pii/S2314728816300149  

16 Customer Correlation Durability Methodology 

https://www.plm.automation.siemens.com/en/products/lms/engineering/customer-correlation.shtml  

17 Industrial Analytics: The Engine Driving the IIoT Revolution https://www.iiconsortium.org/pdf/Industrial_Analytics-

the_engine_driving_IIoT_revolution_20170321_FINAL.pdf    

The result is that an observed correlation 

over time may or may not be coincidental; 

or, the observed correlation (and any 

implied causation) may be the result of one 

or more third-party variables (hidden 

confounders), e.g. another variable that 

influences two events that are seemingly 

correlated. An example of this may be ice 

cream sales and boating accidents that are 

correlated, but both are affected by summer 

temperatures, and so a causal inference 

would be spurious. In this example summer 

temperature is causal, but one may 

incorrectly infer causation that an increase 

in ice cream sales leads to boating accidents 

due to the high correlation factor. More 

humorous examples of these erroneous 

correlations can be found at Spurious 

Correlations.  

Mathematically-based causal analytics 

attempts to improve on correlation for 

causality identification.  

The Evolution of Causal Analytics 

CAUSALITY FOR REAL-WORLD APPLICATIONS 

It is well accepted that causation cannot be 

proven statistically unless one conducts an 

experiment with randomization to control 

https://www.sciencedirect.com/science/article/pii/S2314728816300149
https://www.plm.automation.siemens.com/en/products/lms/engineering/customer-correlation.shtml
https://www.iiconsortium.org/pdf/Industrial_Analytics-the_engine_driving_IIoT_revolution_20170321_FINAL.pdf
https://www.iiconsortium.org/pdf/Industrial_Analytics-the_engine_driving_IIoT_revolution_20170321_FINAL.pdf
http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
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for spurious relationships 18  19 , which is 

simply not practicable in most real-world 

situations. The position of the authors is that 

correlational methods have served well and 

are proven to provide useful insights, but are 

nonetheless prone to producing spurious 

relationships and hence mistaken 

decisions.20 21  

As noted earlier, causality research has been 

undertaken to develop different 

probabilistic methods and approaches for 

identifying cause and effect relationships in 

non-experimental or ‘observational’ data. 

Causal analytics evolved over the past few 

decades from academic studies to practical 

solutions such as rCA. A stumbling block 

historically in reaching this goal has been to 

devise causal algorithms that produce 

reliable and accurate results for commercial 

and government application.  

ADVANCES IN CAUSAL ANALYTICS AND THE 

DEVELOPMENT OF RELIABLE CAUSAL ANALYTICS (RCA) 

In the 1980s, mathematical advances by 

Judea Pearl22 from UCLA showed that causal 

relationships can be represented from data 

in terms of probabilities and led him later to 

declare that “causality has been 

mathematized”. The mathematization was 

perhaps a little premature, but Pearl’s 

                                                      

18 https://us.sagepub.com/sites/default/files/upm-binaries/14289_BachmanChapter5.pdf 

19 http://www.statisticssolutions.com/establishing-cause-and-effect/ 

20 https://hbr.org/2015/06/beware-spurious-correlations 

21 https://en.wikipedia.org/wiki/Spurious_relationship 

22 Judea Pearl https://en.wikipedia.org/wiki/Judea_Pearl  

23 Clive Granger https://en.wikipedia.org/wiki/Clive_Granger  

outstanding work led him to be awarded in 

2012 the industry’s equivalent of the Nobel 

Prize, the Turing award, for advances in both 

machine learning and causality. 

Problems remained however, e.g. how to 

identify a causal relationship when unknown 

delays occur between cause and effect. And, 

what are termed hidden confounders, were 

difficult to identify and control for. Earlier, 

the work of Weiner (1950s) laid the basis for 

several information-theoretic measures of 

causality (and for well-known data 

compression algorithms).  

A landmark innovation was that of Clive 

Granger 23 , awarded a Nobel prize for 

developing a test of causality: X is said to 

cause Y, if the past values of X contain 

information that helps predict future values 

of Y, above and beyond the information 

contained in past values of Y – graphically: 

https://us.sagepub.com/sites/default/files/upm-binaries/14289_BachmanChapter5.pdf
https://en.wikipedia.org/wiki/Judea_Pearl
https://en.wikipedia.org/wiki/Clive_Granger
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Researchers extended this framework, e.g. 

to allow for analysis of multiple time series 

generated by nonlinear models, for lagging 

the cause and effect variables and for causal 

graphical models for better handling of 

latent variables. 

Transfer Entropy 24  25  (TE) is a later 

implementation of the principle that causes 

must precede and predict their effects. TE 

improves on Granger in that it directly caters 

for nonlinear interactions and helps 

minimize problems of noisy data. TE is a 

model-free and non-parametric measure of 

directed information flow from one variable 

to another.  

                                                      

24 Transfer Entropy https://en.wikipedia.org/wiki/Transfer_entropy  

25 Transfer entropy between multivariate time series https://www.sciencedirect.com/science/article/pii/S1007570416305020  

26 Progress in Root Cause and Fault Propagation Analysis of Large-Scale Industrial Processes 

https://www.hindawi.com/journals/jcse/2012/478373/  

The application of TE to empirical analytics 

has been substantial in areas of biomedicine 

and climate science. However, further 

developments were needed to help 

overcome shortcomings related to 

unreliability and a lack of accuracy 26 . Au 

Sable’s work on improving the reliability of 

TE, combined with other Au Sable 

proprietary algorithms, have led to the 

development of an algorithmic approach to 

causal analytics that can process IoT event 

data and provide reliable results. This means 

that Causal Analytics can now be applied to 

real-world scenarios with non-experimental 

data. 

Figure 1: Granger causality test 

https://en.wikipedia.org/wiki/Transfer_entropy
https://www.sciencedirect.com/science/article/pii/S1007570416305020
https://www.hindawi.com/journals/jcse/2012/478373/
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These real-world applications involve 

methods that take into account the 

complexity of systems (thereby including 

analytics of system machine and log data). 

The inter-dependencies and dimensionality 

of many IIoT system devices mean that 

identifying their behavior (causal and 

otherwise) can be extremely difficult 

depending on the magnitude and nature of 

the couplings. One variable may be found to 

be a driver of another, but not alone. The 

multiple influences that have an impact on a 

particular variable must be teased out, such 

as the timings, state-dependencies and 

multi-dimensionality of other influences that 

impact an ‘effect’ of interest, such as a 

decrease in pressure or rise in temperature. 

These are identified as part of the rCA 

process for IIoT. 

This approach has led to an area of causal 

research from a dynamical systems 

perspective. A dynamical system is one in 

which a function describes the time 

dependence of a point in a geometrical 

space.27 28 29 30 A dynamical systems course 

at Harvard states that the methods have a 

focus on the behavior of systems described 

by ordinary differential equations. 

Application areas “…are diverse and 

multidisciplinary, ranging over areas of 

applied science and engineering, including 

biology, chemistry, physics, finance, and 

                                                      

27 https://en.wikipedia.org/wiki/Dynamical_system 

28 https://en.wikipedia.org/wiki/Dynamical_systems_theory 

29 https://mathinsight.org/dynamical_system_idea 

30 http://math.huji.ac.il/~mhochman/research-expo.html 

31 https://scholar.harvard.edu/siams/am-147-nonlinear-dynamical-systems 

industrial applied mathematics."31 This is a 

fairly recent set of developments and 

especially with respect to incorporating AI 

and machine learning where these 

algorithms can be applied to IIoT data at 

scale.  

Automating rCA in Industrial IoT 

Applications 

Although the rCA approach can be employed 

on an ad-hoc basis by an analyst, the real 

benefits come from automating the rCA AI 

analysis as part of an IoT process. The rCA 

function can be executed based on trigger 

events such as data changes or exceptions. 

The rCA software and algorithms are 

embedded in the functions library of the 

XMPro IoT Process platform for IIoT 

applications. 
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In this example, event data is ingested from 

their Honeywell® historian and 

contextualized with asset data from their 

IBM Maximo® EAM system. Further context 

is provided from operational data stores. 

This information is passed to the rCA Causal 

Analytics AI function that creates the causal 

coefficient matrix and other outputs 

described later in the article. 

This automated, process-based approach 

ensures repeatability, consistency and that it 

can be done at scale for a large number of 

assets in a process stream. The automated 

process can process and analyze much larger 

volumes of IoT data than human RCA 

analysts. In the FPSO example different 

analyses are automated at different time 

intervals such as daily for high impact 

equipment and weekly or monthly for other 

areas. This is configurable by the end users 

and ad hoc analysis can also be performed. 

CUSTOMER EXAMPLE: RCA IN OIL 

AND GAS PROCESSING 

Background to the Application of rCA in Oil 

& Gas 

The example demonstrates how rCA can 

enable an FPSO to optimize production and 

productivity as well as predict and avoid 

incidents which threaten health, safety, 

environment, community and financial 

Figure 2: XMPro IoT Process Stream for rCA 
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outcomes. The initial field study project was 

aimed at three key objectives: 

EFFICIENT OPERATIONS AND MAINTENANCE  

This project will drive down the costs of 

reduced or lost production caused by 

unplanned failures. Other operational 

efficiency gains will be achieved by reducing 

the risks of environmental impact caused by 

operational failure and the risks to personnel 

safety caused by breaches of operational 

standards. Furthermore, the costs of asset 

maintenance will be reduced and the 

capability of diagnosing asset health in 

remote and challenging operating 

environments is increased. 

SAFETY AND SOCIAL LICENSE TO OPERATE 

Equipment failure and/or an unsafe work 

environment can potentially result in harm 

to humans or the environment, ultimately 

increasing operational risk and impacting an 

organization’s social license to operate.  

This solution will assist in providing a safe 

production environment. In addition, 

through to the inbuilt predictive analytics, 

further eliminate operational risks which 

could impact the social license to operate if 

undetected and left uninvestigated and 

unaddressed. 

ENABLING EFFECTIVE COLLABORATION 

Traditionally there exists a significant divide 

between the operational technology (OT) in 

heavy asset sectors like Oil & Gas and the 

information technology (IT) arena. Not only 

are they typically separated by physical, 

geographical and network constraints, they 

are also generally isolated philosophically.  

The innovative solution and integrated 

application suite enables interoperability of 

data feeds from sensors and devices, with 

the associated referential information from 

the asset registry and maintenance 

framework. It combines data from both IT 

and OT and this new information provides 

insights that can be shared collaboratively 

between OT, IT and Operations. It makes 

new levels of operational excellence, 

collaboration and sustained productivity 

improvements possible. 

The project mirrored an upstream oil and gas 

process flow including value-added services 

at each stage of the supply chain leveraging 

real-time IoT big data, machine learning and 

artificial intelligence.  

Going beyond the obvious elements that 

cause an interruption to production, rCA is 

used to find root causes and inter-

dependency which may be overlooked or 

not realized with current technology. This 

will enable the operations team onboard the 

FPSO to keep it in production without 

interruption for long periods and, when 

down, to be repaired and brought on-stream 

faster.   

Most importantly, these improvements 

reduce the risk of events that impact the 

safety of all personnel on the FPSO and 

protect the environment on the vessel and in 

the geographic vicinity. 

Project Background 

The FPSO plant had experienced occasional 

periods of operational instability. These 

were largely unexplained, yet some 

significant and costly problems resulted. It 

was particularly challenging to identify the 
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actual cause(s) of the problems. Routine 

correlational methods of analysis, such as 

traditional RCA, had been applied but 

provided the operators with only limited 

assistance. 

The project was conducted in 2 phases. In 

the initial phase the FPSO operator wanted 

to validate the algorithms through an initial 

manual analysis before automating the 

process in phase 2.  

Au Sable’s rCA system used sensor-driven 

and machine data covering a defined period 

where these events occurred as the basis for 

the analysis. The rCA analysis discovered 

cause-effect relationships that were not 

previously known by the engineers and that 

helped to identify and address the real root 

causes of the problem. The results of the rCA 

analysis in phase 1 provided new insights 

into causal relationships that were 

previously not considered in the human 

analysis process. This is of significant value 

and benefit to the operations and 

engineering teams of the Oil & Gas customer 

operating the FPSO and it provided the 

support to automate the process in phase 2.  

The example data shown is that of the phase 

1 analysis that provided the insights and 

confidence in the output to support the 

decision to automate the process for a larger 

data set and additional equipment.  

rCA on the FPSO 

During phase 1 the analysis was done 

manually to validate the model and establish 

the workflow for the automated steps in 

phase 2. 

The analysis approach in phase 2 consists of 

three main process steps: 

 Ingest data: Real-time feeds of 
operational data are collected from 
intelligent equipment (e.g. 
submersible pumps, etc.) and from 
the Honeywell Historian through 
XMPro’s Listener integration 
connectors that stream the data to 
the analysis step;   

 Perform analysis: The streaming data 
from the previous step is passed to 
the rCA algorithms in the XMPro rCA 
Functions connector where the 
analysis is performed; and  

 XMPro Action Agents provide reports 
and actions on the results of the 
analysis that identify real causes and 
not just symptoms of production 
outages. 

Data from sensors at locations across the 

plant operations were mapped to locations 

on a process flow diagram (PFD) and are 

shown as red circles in Figure 3. This provides 

a familiar visual reference for the engineers 

of the physical process and the data from the 

different sources. 
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The FPSO plant engineers provided one 

month’s data at one-minute intervals from 

sensors at the above locations. The rCA AI 

algorithm processed the data to identify a 

limited number of cause and effect 

relationships between the equipment or 

devices in Figure 3 where there is a high 

causation coefficient. This is derived from a 

proprietary causal effects matrix. The causal 

effects matrix tends to be sparse with a 

much small number than in a correlation 

matrix, typically about 10-15% for the same 

data.  

The output from the causal effects matrix 

that provided invaluable insight for the 

engineers is a graph (Figure 4) that ranks 

causal relationship based on causal 

coefficient and the confidence level in the 

causal relationship. It identifies those 

relationships with high causality and high 

confidence at a glance and engineers can use 

this information to map it back to the 

physical process.  

It is easy to spot events that have a high 

causal coefficient with high confidence 

levels and focus on the meaning and impact 

of these insights. 

Figure 3:  Locations of sensors (red circles) on a process diagram of plant operations 
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An enhanced PFD diagram, Figure 5, shows 

the top casual relationships between the 

equipment/devices overlaid on the process 

flow diagram. This approach connects the 

analytical model with the physical process 

Figure 4: Chart of the top cause and effect relationships 

Figure 5: Overlay of causal relationships on a process flow diagram – showing causal coefficient values plus 

confidence levels in brackets 
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model for the engineers who can interpret 

the results.  

This diagram shows, for example the causal 

relationship and confidence level, in 

brackets, of the condenser coil pressure and 

the flash vessel pressure (nodes I and J) that 

correspond to the chart in Figure 4. 

The plant engineers were most interested in 

examining the main relationships, those with 

the strongest measure casual coefficients 

and higher levels of confidence.  

Figure 6 provides a causal coefficient view in 

a traditional graph that removes the 

contextual bias that an engineer may have. 

This view enabled the engineers to see 

causal relationships without the physical 

process relationships. It triangulated some 

of their findings and observations from the 

chart and process flow diagram views. 

Findings and Observations from the Phase 1 

Analysis 

The chart in Figure 4 provided the most 

insight to the FPSO operators. The initial 

objective to validate the rCA algorithm was 

accomplished with physical evidence to 

support the outputs of the rCA analysis. The 

following three examples describe some of 

that validation process.  

The high casual coefficient of the condenser 

coil pressure and the flash vessel pressure 

made sense from an engineering perspective 

as it is part of the design. It was expected to 

have a high causal relationship and it did. 

This proved that the rCA algorithm 

performed as expected.  

The causal relationship between the 

condenser coil pressure and the dewpoint 

(middle of the chart) was not obvious prior 

Figure 6: The top cause and effect relationships shown as a directed graph 
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to the analysis and it turned out that it had 

an impact on operations. It led to further 

investigations by the engineering team. 

The third example relates to the causal 

relationship at the bottom of the chart. It has 

a high causal coefficient, but a low 

confidence level for ambient temperature to 

measure dewpoint. In a physical, isolated 

system the 2 should not be related from an 

engineering perspective. One of the 

engineers found the cause after 

investigation. The dewpoint measurement 

sensor is exposed to full sun when the vessel 

sits in a certain orientation, which affected 

the dewpoint measurement and led it to 

track the ambient temperature as a measure 

of exposure to sunlight. This in turn affected 

the efficiency of operations as the rate of lift-

gas being dehydrated was affected. 

The three examples provided enough 

evidence to proceed with phase 2 to 

automate the process for scheduled time 

intervals and to include additional data 

points. One of the main benefits of the 

automated process is that the FPSO 

engineers can perform the root cause 

analysis without the assistance of a data 

scientist to manually perform the analysis. 

This is an important requirement for the 

FPSO operator to deploy rCA at scale. The 

nature of causal analytics requires a 

complete re-analysis if any of the causes 

found in previous analyses were addressed 

or changed. There are often unintended 

consequences of making changes that only 

show up in a new analysis. These analyses 

need to be performed in a consistent 

manner which is facilitated by the 

automation of the process. Phase 2 is 

underway at the time of writing this article 

and the benefits of the automation process 

will described in a future article by the 

authors. 

The use case illustrated that an additional 

dimension of understanding can be added to 

the analysis and troubleshooting of 

Industrial IoT problems. The results are 

reported in the above formats and able to be 

extended to additional desired forms of 

output.  

CONCLUSION 

Most IoT platform vendors use traditional 

statistical methods based on correlation and 

regression for their analytics functionality. 

These are proven to work but also have 

limitations that restrict their applicability to 

quickly and accurately identify causative 

factors that did, or will, cause some effect. 

This means the decision making may be sub-

optimal or even inaccurate. 

rCA adds a different and complementary 

dimension of IoT data analysis and decision 

making. rCA is a breakthrough technology 

that brings new methods for the application 

of cause and effect analytics to real-world 

industrial problems. By adding a new and 

powerful dimension of analytics, it enables 

users to refine their decision-making, reduce 

risks, improve safety and reliability, and 

reduce costs and equipment downtime. 

The culmination of this “Reliable Causal 

Analytics” approach is the ability for the 

solution to enable operators to more 

completely understand: 

 What caused what (and when) 

 What will cause what (and when) 
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 What could/should be done to 
avoid… 

 Which processes could/should be 
changed to improve going forward 

 Continuous improvement of 
processes 

Future work and research is planned to 

extend rCA to other use cases and IIoT 

applications. Interested parties are invited to 

submit use cases for consideration. 
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