

Industrial Artificial Intelligence

IIC Industrial Artificial Intelligence Task Group Chairs: K. Eric Harper Senior Principal Scientist ABB Corporate Research eric.e.harper@us.abb.com

Brad Klenz IoT Analytics Architect SAS Brad.Klenz@sas.com

Wael William Diab

Vice President - AI, IoT Standardization and Strategy Futurewei Technologies wael.william.diab@futurewei.com

AUTOMATION ORIGINS

The dream of mechanical automation goes back to the beginnings of human history¹. Water flow and hydraulics were used to control movement as far back as 1500 BCE, and steam was leveraged as an automation force in 300 BCE. Leonardo Da Vinci designed and implemented his Robot Knight in 1495 using pulley and cables. In the 17th century, automation was used to play musical instruments and animate what appeared to be living things. Mechanical computation to support automation was introduced with the Analytical Engine in 1842, and these techniques have evolved into our modern digital computers.

Artificial Intelligence (AI) is our attempt to replicate human cognitive function. Just like we strived to duplicate the function and value from animal and human labor, the vision of machines and programs with greater autonomy has driven research and experimentation. Stanford University has records² on AI dating back to the 1960s. Back then a new programming language called LISP (LISt Processor) ³ supported representing structured programs and their data in the same list format. Could a computer program modify and extend itself? Certainly, at a minimum we can accomplish this today with discovery and tuning of configuration parameters, and runtime code patching is used in adaptive programming.

ACADEMIC ORIGINS

AI for industrial applications bridged from academic research. Edward Feigenbaum from Stanford collaborated with the University of Michigan, University of Pittsburgh and Rockefeller University on DENDRAL⁴, an expert system for scientific hypothesis formulation. This provided the basis for MYCIN⁵ where the techniques were applied in medicine. Expert systems were an attractive approach because the pruned search of the solution space could be explained.

Neural networks, on the other hand, stemmed from neurological science and attempted to replicate how our brains worked. At Cornell University, Frank

¹ Spaeth, D., "From Single-Task Machines to Backflipping Robots: The Evolution of Robots", Cutting Tool Engineering (January 2018). <u>https://www.ctemag.com/news/articles/evolution-of-robots</u>

² The History of Artificial Intelligence, Stanford Libraries. <u>https://exhibits.stanford.edu/ai</u>

³ Berkeley, E.C., "The Programming Language LISP: An Introduction and Appraisal", Computers and Automation (September 1964). <u>https://archive.org/details/bitsavers_computersA_6908895/page/n15</u>

⁴ Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., Lederberg, J., "DENDRAL: a case study of the first expert system for scientific hypothesis formulation", Artificial Intelligence vol. 61, Elsevier (1993).

⁵ Buchanan, B.G., Shortliffe, E.D. "Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project" (1984).

Rosenblatt's Perceptron⁶ had three layers with the middle set of neurons called the association layer. In 1969 Marvin Minsky and Seymour Papert from MIT wrote a book⁷ stating that a multi-layered approach to neural networks would not be successful, which effectively eliminated funding for that kind of AI. Tell that to the folks creating amazing results with Convolution Neural Network (CNN) image recognition. It took twenty years for the innovation to get started again.

EARLY INDUSTRIAL AI

Applications of AI in industry extended the ideas for pruned searches of the solution space, especially with the focus on product design, production planning and logistics. Mark Fox from Carnegie Mellon University summarized ⁸ the advances within two AI categories: Knowledge Representation and Search. He framed the driving forces as shown in Table 1.

Force	Description	
Expertise	Scarcity is endemic to many corporations	
Decision complexity	Large number of alternatives from which to choose, exacerbated by flexible manufacturing systems	
Decision support	Information is becoming more complex, reduce to only what is necessary for an individual to decide	
Decision timelines	Deadline to plan and decide is decreasing	
Coordination	How can designs help optimize the down-stream activities?	

Table 1: Issues in Manufacturing

These motivations drove specific applications of AI, especially expert systems, in the 1970s and 80s. Table 2 ⁸ below summarizes those early applications.

INDUSTRIAL AI TODAY

The ground-breaking innovations in the last century are having a dramatic impact on many aspects of our lives. In addition, there is benefit from revisiting those solutions

⁶ Rosenblatt, F., "The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain", Cornell Aeronautical Laboratory, Psychological Review, v65 (1958).

⁷ Minsky, M., Papert, S., "Perceptrons: an introduction to computational geometry", The MIT Press, Second Edition (1972).

⁸ Fox, M.S., "Industrial Applications of Artificial Intelligence", Robotics, Vol. 2, Issue 4, Elsevier (December 1986).

because the stakeholder concerns, expected value and associated requirements have not changed in all these decades. We have evolved significant increases in computing, storage and communication capacity that make the earlier applications seem like toys today.

Category	Summary	Examples
Configuration	Combine components to form a final	R1 / Xcon - knowledge-based configuration
	product	of VAX-11 computer systems
		XSEL - artificial Intelligence applied to the
		acquisition and analysis of specifications
		VT - elevator configuration
Extrapolation	Alter an existing product to meet the	ALADIN - engineering design altered to
	customer's specifications	meet the customer's specifications
Discovery	Combine components to produce	EURISCO - design of VLSI circuitry
	interesting functional systems	TALIB - electronic circuitry design
Validation	Confirm design behaves as defined by	CONSTRAINTS - infers functionality from
	the functional specification	the form of an electronic circuitry
		CORA - thermal and hydraulic transient
		analysis of reactor core assemblies
Project	Manage product definition and	CALLISTO - project scheduling, control and
Management	activities performed to design products	configuration problems
Production	Forecast customer demand, plan the	ROME - analysis of resource plans
Planning	process, lay out the facilities, specifies	GREASE - select cutting fluids for machining
	maintenance and trains the workers.	operations
		FADES - methodology for factory design
Production	Plan, schedule, manage the shop floor,	ISIS - factory scheduling
	control cells, inspect product and	IMACS / PTRANS - flow shop scheduling
	maintain of processes	IDT - detect faults in PDP 11/03 computers
		IPWBIS - inspect inner layers of printed
		wire boards
Distribution	Manage final phases of the	INET - simulation to model organization
and Field	manufacturing product life cycle	structures and analyze automatically the
Service		results
Diagnosis	Perform diagnosis of industrial assets	GENAID - diagnosis of steam turbines and
and Repair	using sensor input	generators
		ACE - diagnosis of cable problems for
		telephone wiring
		DELTA - diagnosis of diesel locomotives
		DART - diagnoses computers based upon
		their structure

Table 2: Early Industrial AI Applications

The Industrial Analytics Task Group in the Industrial Internet Consortium (IIC) was renamed in 2018 to the Industrial Artificial Intelligence (IAI) Task Group to reflect member interests and to provide best practices for applying machine learning and AI technology to industrial settings. At the time of this article, the IAI Task Group is in the process of collaboratively authoring an AI white paper with the plan to publish the white paper by IoT Solutions World Congress in October. If you are interested in working on the white paper, please contact the IAI Task Group co-chairs. An earlier accomplishment of this Task Group is the Industrial IoT Analytics Framework published in October 2017, with a chapter dedicated to AI and Big Data. The IAI Task Group consists of experts from around the world and meets bi-weekly via conference calls to share perspectives and move their collaborative activities forward. At the IIC quarterly meetings, the IAI Task Group hosts sessions that often include executive panels exploring the challenges and future of AI.

We invite you to explore the rest of this Journal of Innovation issue dedicated to Artificial Intelligence and encourage you to engage with others on these topics and continue the advancement of industrial IoT, analytics and artificial intelligence.

Return to <u>IIC Journal of Innovation landing page</u> for more articles and past editions

The views expressed in the *IIC Journal of Innovation* are the contributing authors' views and do not necessarily represent the views of their respective employers nor those of the Industrial Internet Consortium.

© 2019 The Industrial Internet Consortium logo is a registered trademark of Object Management Group[®]. Other logos, products and company names referenced in this publication are property of their respective companies.