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INTRODUCTION 

High-frequency live connection to data feed from sensors on equipment offers several benefits 

such as facilitating human surveillance for better asset management, identification and diagnosis 

of abnormalities and suboptimal operation. However, normal operation does not necessarily 

imply optimal operation. To obtain optimal production, the asset must be operated at 

appropriate set-points. For dynamic assets or systems, the optimum set-point changes with time. 

In such cases, the live data feed associated with the equipment’s IIOT network can be harnessed 

to develop a dynamic set-point optimization mechanism.  

Existing literature on Petroleum Production optimization on Artificial lift wells set-points is 

heavily focused on manual simulation, design and recommendation by experts, or through semi-

automated batch implementation of Evolutionary 1 , statistical or machine learning models. 

Current literature on Digital Twin implementations2 in Oil and Gas present a broader picture on 

overall production process optimization3, but not on dynamic individual asset level set-point 

optimization. Fully automated set-point recommendation requires a data processing engine 

integrated with a simulation engine that can manage, process and generate large volumes of 

data. Current literature does not provide design details of critical individual components to 

implement a fully-automated data processing and simulation engine. This paper attempts to 

address this deficiency.  

Digital Twins representing systems of assets can be valuable in determining optimal operating 

set-points. The integration of live IIOT data-feed with a Digital twin system offers several 

challenges and requires a detailed design for effective implementation. The following aspects of 

the implementation are detailed in this paper: Data processing: profiling, clean-up, 

transformation and cloud-database maintenance for multiple assets, high frequency data 

Simulation: Automated cloud-database triggered field data relevant massive scale simulation 

(60,000 + per day). 

 

1 Garcia, Artur Posenato, and Vinícius Ramos Rosa. "A Genetic Algorithm for Gas Lift Optimization with 

Compression Capacity Limitation." Paper presented at the SPE Latin America and Caribbean Petroleum 

Engineering Conference, Mexico City, Mexico, April 2012.doi: https://doi.org/10.2118/153175-MS 

2  LaGrange, Elgonda "Developing a Digital Twin: The Roadmap for Oil and Gas Optimization." Paper 

presented at the SPE Offshore Europe Conference and Exhibition, Aberdeen, UK, September 2019.doi: 

https://doi.org/10.2118/195790-MS 

3 Okhuijsen, Bob, and Kevin Wade. "Real-Time Production Optimization - Applying a Digital Twin Model to 

Optimize the Entire Upstream Value Chain." Paper presented at the Abu Dhabi International Petroleum 

Exhibition & Conference, Abu Dhabi, UAE, November 2019.doi: https://doi.org/10.2118/197693-MS 

https://doi.org/10.2118/153175-MS
https://doi.org/10.2118/195790-MS
https://doi.org/10.2118/197693-MS
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The specific use case chosen in the paper for showcasing the methodology is related to set-point 

changes on the artificial lift 4  equipment of the well for optimizing the production system. 

Examples of such artificial lift equipment include: Electrical Submersible Pumps (ESP), Rod 

Pumps, Gas Lift, and Plunger Lift. 

DIGITAL TWIN SCHEMATIC 

The design and implementation of a digital twin for dynamic set-point optimization on a 

petroleum production system using live IIOT data consists of several steps. These are: 

1. Field Data processing: Collection, profiling, clean-up, transformation and cloud-database 

maintenance 

2. Simulation: Automated cloud-database triggered field data relevant simulation  

3. Inverse modeling:   

a. Connecting real-world IIOT data with simulations to learn system unknowns  

b. Evaluation: Estimate how closely the digital twin mimics the real-world asset from 

history 

c. Calibration: Implement initial steps using insights from digital twin to account for 

uncertainty 

4. AI Model Recommendation: Deploy automated recommendations for set-point 

adjustments with updates based on dynamic trending of the asset 

This paper focuses on the automation of the first two items of this process: Data Processing and 

Simulation. These steps are described in the context of feeding an AI engine that further consists 

of inverse modeling and model generated recommendation system. The details of the Inverse 

modeling and AI model recommendation components are beyond the scope of this paper.  

Figure 1 represents a schematic of the overall process. It is important to note that this is a closed-

loop ongoing process and not a feedforward sequence of steps that ends in a recommendation. 

This distinction is important for two main reasons:  

a. After a model-generated recommendation has been implemented, an effective digital 

twin that is a live virtual representation of a physical system needs to identify changes 

in operating state, record and evaluate the response and trigger an ongoing cycle 

involving data processing, simulation, inverse modeling to adjust the system in case if 

the previously provided recommendation needs to be followed up with a new 

recommendation. 

b. The digital twin can evaluate the impact of all historic set point changes and fine-tune 

the recommendation system. 

 

4 https://www.rigzone.com/training/insight.asp?insight_id=315&c_id= 

https://www.rigzone.com/training/insight.asp?insight_id=315&c_id=
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Fig. 1: Schematic of the closed-loop process providing an overview of the Digital Twin. 
 

THE CURRENT STATE 

Before going further into the details of the Digital Twin implementation, it is necessary to 

understand the scope and potential impact of this paper. In this section, it is attempted to set a 

baseline by describing the typical current state of operation in the Oil and Gas Industry.  

The above described process in Figure 1 is already implemented widely in the oil and gas industry, 

albeit, every step in the process is performed manually by subject matter experts, and on a well 

by well basis. The manual process is time-intensive, it takes several hours to implement it on one 

well at a given point of time for data collection, processing, simulation, inverse modeling and 

generating a set-point recommendation using a history matched model. Petroleum wells are 

dynamic entities that change their underlying operating conditions over time.  

Further, wells are subjected to discontinuities in behavior due to design changes, workovers, re-

stimulation and impact from nearby operations such as hydraulic fracture hits. Set-point reviews 

or changes are required as the well behavior changes. If diligently performed, the time 

investment required to optimize set-points is approximately 7-10 days per well per year. Due to 

the significant time investment, typically, the simulation based set-point optimization is 
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employed semi-annually or annually per well, or when there has been a redesign or a workover.  

The details of the typical procedure are represented in the Manual Optimization section of Figure 

2. 

The automated version of the manual optimization results in dynamic optimization. Such a 

system can go through the entire process from data collection through to set-point 

recommendation for all wells on a continuous basis. Changes in well operating states are 

programmed to be detected, and the underlying models that are used to generate the set-point 

recommendations get updated with changing well conditions.  

The term “automation” in this paper refers to the implementation of a system designed to 

minimize human intervention by identifying, templatizing, storing, scheduling and executing 

repeatable processes. As described above, it is feasible to generate manual set-point 

recommendations, however, to manually update and generate simulations every time there is a 

change in the system for a field consisting a few hundred wells becomes intractable. As a result, 

thumb-rules or intuition based set-point optimization takes the forefront position when 

compared to physics-based-modeling.  

The scope and intent of this paper is to describe a system capable of automating massive scale 

simulation and the associated data processing using a cloud based distributed system. Such a 

system stores, transfers and processes data, and subsequently queues, executes and stores the 

results from thousands of simulations relevant to several hundreds of wells on an ongoing basis. 

The expected impact of the paper is to provide motivation to set up pipelines for automating 

components or entirety of the data processing, simulation, inverse modeling and set-point 

recommendation workflow in the Oil and Gas industry and other analogous spaces capable of 

utilizing an IIOT network for developing a digital twin as defined in the introduction section of 

this paper.  
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Fig. 2: Comparison between manual optimization (current state) versus dynamic optimization 
that can be achieved through the digital twin. 

DATA COLLECTION 

The first component of our digital twin as described in Figure 1 is: Field Data Processing. Field 

data contains variety, Figure 3 highlights this variety through some examples.  

In regards to field data, there are two primary types of data: sensor data and metadata.  

1. Sensor Data: The live signal from various sensors on assets was collected by a SCADA 

(Supervisory Control and Data Acquisition) system. Some general examples of sensor data 

include:  

● pressures, flow rates, temperatures for the well site, surface facilities and well 

downhole.  

● Other examples specific to artificial lift equipment may include details such as: 

Pump frequency, voltage, compressor discharge and intake pressures. 
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Fig. 3: Data variety – Sensor Data, Metadata. 
 

These sensor signals were collected through wellsite telemetry and dropped onto a cloud 

based storage by the well operator’s SCADA provider. This data was typically accessed by the 

operator for monitoring and surveillance. The sensor data is universally accessible once 

access credentials are shared for data transfer. Such data is time-series data and is typically 

transferred in files titled after a time-stamp, and containing the sensor signal for all the assets 

during a chunk of time. It might be worth noting that the sensor streams can be intermittent 

due network or telecommunication issues, delivered out of order or on a time delayed basis. 

These time-specific files can be aggregated and restructured to tables as suited by the user. 

In this particular case, this data was converted to tables indexed by asset ID and timestamp, 
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with corresponding sensor signals stored in columns. An example of such a file is displayed in 

Figure 3, in the image titled “Sensor Data: Flat files – csv”.  

 

2. Metadata: To further represent the system which the sensor data is associated with, the 

metadata of the system is necessary. Examples of metadata can include but not restricted to:  

● Name, location, deviation and completion data of the well 

● Design data for the artificial lift equipment  

● Piping and Instrumentation schematic of the well and facilities sites 

● Fluid properties:  PVT (Pressure, Volume, Temperature) data 

  

Figure 3 highlights how the metadata may be available in various formats such as images, 

excel sheets, PDF documents etc. A key component of automation is to digitize the various 

forms of data into a uniform data store. This involves creating a template that records the 

quantitative details of the metadata. An example of such a digitized template of the metadata 

is displayed in Figure 4. Once digitized, metadata is extractable through an API as a 

hierarchical data format such as JSON. 

  

It is important to note that metadata is not usually available at a single location or from a 

single source. There is a significant amount of manual effort that goes into contacting the 

field operators, the SCADA company, the equipment manufacturers to gather this data and 

to digitize it. A uniform reference data store space was created on the cloud to maintain and 

access the raw metadata as a source of truth.  

 

Often metadata is manually entered into the system because it is associated with the well 

when it is installed and does not change afterwards.  When there is a maintenance event that 

changes a physical equipment of the well, the metadata may need to be updated depending 

on the changes being performed. 
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Fig. 4: Template for Digitized well metadata. 
 

DATA PROCESSING 

The sensor data and metadata were recorded and digitized from various sources. Further the 

data processing steps subsequent to this includes: 

● Mapping data 

● Profiling 

● Cleanup  

● Transformation  

● Labeling events 

● Flagging changes 

 

Mapping:  As described in the previous section, Sensor data and metadata come in different 

formats and are stored in different formats. Similar devices from different providers or SCADA 

systems often have different naming schemes, these sensor tags need to be mapped to their 

appropriate devices and assets. After the name mapping the time series sensor data is mapped 

to its asset metadata by merging the two data sources by asset ID.  

Data profiling: After mapping sensor data and metadata, sensor data will be going through an 

EDA (Exploratory Data Analysis) process which we call as data profiling step. In this step, we look 

into some specific properties of well’s sensor data to determine if it meets our model’s 

requirements and in result we can create a cohort of wells which have sufficient data properties 

to be used in our models. Those properties are including but not limited to Monitored Time, 

Lapse Time/Monitor Time ratio, Zeros ratio, and Frequency. Monitor Time quantifies how much 
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historical data that a well has. Lapse Time is defined as a period of time we don’t receive any 

signal from the well, therefore Lapse Time/Monitor Time ratio is to determine the proportion of 

data availability over the life of a well. Similar to Lapse Time/Monitor ratio, Zeros ratio is used to 

see the actual variance in data. Frequency of data is also a key factor to the success of our models, 

the more granular data we have the better our models’ performances are. A set of thresholds 

will be applied on each of the properties mentioned above. Sensors that meet these thresholds 

will be examined to see if they are sufficient for our models. Wells that include these qualified 

sensors are included in a cohort. 

An example of Monitored Time threshold is shown below where Monitored Time threshold is set 

at 90 days which consequently reduces the number of wells in the cohort from 217 to 56 wells.  

 

Fig. 5: Cohort selection based on monitored time. 
 

Cleanup: Data coming from several wells over a period of time may include various challenges 

such as abnormal states of operation of the well (for example: shut-in, maintenance job, 

inconsistent performance), faulty signal, signal lapses, signal names that are inconsistent from 

convention. It is necessary to identify these inconsistencies. Some of these can be identified and 

eliminated systematically, such as identification of dummy values of a signal, removal of outliers, 

or identifying that a well is shut-in. There are other abnormalities that require human review, for 

instance, a signal that was named inconsistently, or a metadata element that does not fit the 

template.  

Transformation: It is not beneficial to evaluate meaning out of data, or generate simulations at 

the frequency of live data. Signals may be recorded at different timestamps and variable 

frequencies. In the work presented in this paper, data was resampled to a daily frequency to 

match the frequency of the production rates of the wells. Further, the variation related features 

such as the oscillation frequency/wavelength, level of stability when compared to the normal 

signal was captured through a rolling normalized coefficient of variance. Unstable states were 
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treated separately from stable states of operation. Figures 6 and 7 respectively represent the use 

of box plots, and normalization of data, for outlier detection and identification of stable states.  

 

Fig. 6: Box plots indicating distribution of change in measured variables as a result of set-point 
(gas injection rate) changes. 

 

 
Fig. 7: Identification of stable operating states through normalization. 

 
Labeling Events: When assets undergo gradual or prolonged states of abnormal behavior, the 

normalization filters may not be sufficient to identify and isolate such time zones. A monitoring 

platform that facilitates labeling can be a great tool. In the use case presented in this paper such 

Downhole Pressure Separator Pressure 
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a platform was used for Identification of events of interest by subject matter expert review. This 

method can be fast, effective and multipurpose. Data associated with the timestamps of the label 

can be easily extracted and utilized for further analysis, and supervised machine learning models 

can be trained for detecting such complex anomalies.5 Figure 8 shows an image of such an expert 

reviewed label to identify abnormal time.  

 

 
Fig. 8: Labeling of abnormal events. 

 
 

Flagging changes: To have a closed loop system for generating set-point change 

recommendations, it is imperative record historical and life set-point changes in the system to 

identify and evaluate the response to the stimulus. An illustration of recording flagging changes 

and their responses is presented in Figure 9. The Gas Injection Rate displays the set point value, 

Oil and Water sensors represent the responses measures to a set-point change. In Figure 9, the 

periods across set-point change indicated by greyed zones are marked such that tubing and 

casing pressures are operating in a stable state. Measuring the response of a set point change 

while the well is operating abnormally leads to incorrect evaluation. 

Flagging changes has its similarities and differences when to identification of abnormalities. The 

difference is that abnormalities are usually not human controlled and are usually unintentional. 

The similarity is that both set-point change and abnormalities indicate a change in operating 

state. These can be identified through supervised methods such as labeling followed by machine 

learning models, and unsupervised methods such as measuring deviation beyond a threshold. 

The approach in this paper is a supervised “human-in-the-loop” approach, where set-point 

recommendations generated by the system are monitored and reviewed by the operator prior 

 

5 Pennel, Mike, Hsiung, Jeffrey, and V. B. Putcha. "Detecting Failures and Optimizing Performance in 

Artificial Lift Using Machine Learning Models." Paper presented at the SPE Western Regional Meeting, 

Garden Grove, California, USA, April 2018. doi: https://doi.org/10.2118/190090-MS 

https://doi.org/10.2118/190090-MS


Design and Implementation of a Digital Twin for Live Petroleum Production Optimization   

  

IIC Journal of Innovation - 13 -   

 

to implementing the change. This is also a step towards expert augmented machine learning6, 

where the feedback provided by the expert on the model generated recommendations is utilized 

to adapt the model to provide improved recommendations in subsequent rounds.  

 

Fig. 9: Flagging changes and recording the response to the stimulus 

 

 

SIMULATION 

Having covered the collection and processing of physical data, in this section we proceed to 

describe the methodology for automated generation of virtual data. Simulation represents the 

virtual data generating component of the digital twin. The oil and gas optimization literature is 

rich in description of simulation based artificial lift and gas lift set-point optimization approaches. 

The paper by Rashif et al.7 summarizes a survey of different gas lift optimization techniques using 

simulation as a basis. Borden et al.8 presented a surveillance and workflows-based approach for 

gas lift optimization. Surendra et al. 9  presented further progress in the field by automating 

combining the analytics and physics-based modeling/simulation approaches through a case study 

 

6 arXiv:1903.09731 

7 https://doi.org/10.1155/2012/516807 

8 https://doi.org/10.2118/181094-MS 

9 https://doi.org/10.2118/201298-MS 

https://arxiv.org/abs/1903.09731
https://doi.org/10.1155/2012/516807
https://doi.org/10.2118/181094-MS
https://doi.org/10.2118/201298-MS
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in a Middle east oilfield, this study included the approach to simulating 50 wells in less than two 

weeks’ time.  

The work presented in the current paper takes a step further any creates a live-connection 

between field IIOT sensor data and a cloud-based simulation system that can generate 60,000+ 

simulations per day taking input from field data. This coupling between the physical and virtual 

data represents a key component of the digital twin. An effective digital twin is expected to 

represent and mimic a physical system. Hence, the simulation scheme described in this paper is 

closely connected to the physical data to maintain relevance. 

The simulation section in this paper covers the following topics:  

● Simulation Schematic 

● Simulation Input  

● Simulation Output 

Simulation Schematic: 

A commercial transient physics-based simulation software was employed to represent the fluid 

flow from the oil and gas reservoir through wellbore and the surface facilities that include the 

separation system and pipelines in order to transport fluids.  

Figure 10 represents the process flow diagram of the physical setup and its corresponding 

simulation setup. Well and surface facilities schematics may vary among operators, fields, even 

between well pads. To generate a new exact simulation schematic for every variation in physical 

process flow is a very time-intensive process. Hence, for templatization purposes, the simulation 

scheme has been simplified to include only those components that are relevant to the objective. 

For example: in the process flow diagram in Figure 10, there are multiple tanks per fluid, this is 

reduced to a single tank per fluid in the simulation schematic since the back pressure created by 

the downstream tanks is negligible.  

It is to be noted that the templatization process can in some cases also add complexity to the 

system. For instance, the process flow diagram in Figure 10 represents a single well system with 

no connections to other wells. However, the corresponding simulation schematic includes a gas 

source coming from other wells downstream of the separator. This complexity has been included 

to make the simulation template a general one that can be utilized on systems with gas lines 

commingling from multiple wells. In the case of a single well system, the value of this parameter 

is set to zero.  
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Fig. 10: Field data process flow diagram and its corresponding simulation schematic. 

Simulation parameter sensitivity was assessed using box plots similar to the examples shown in 

Figure 6. It was observed that the spread of change (0-30 psi) in separator pressure was higher 

than that of bottom-hole pressure (0-3 psi) during set-point changes. This exploratory data 

analysis was helpful in the design of the simulation setup that led to some crucial decisions. For 

example, reduction of bottom hole pressure is considered to be one of the primary objectives10 

of artificial lift. In the nodal analysis performed through simulation software it is common to find 

literature with separator or the wellhead specified to be the end node11.  

Such systems assume the end node pressure to be constant during a set-point change.  In a 

previous version of this work, several challenges were observed in mimicking the out pressures 

of physical system due to the assumption that the simulated wellhead/separator pressures were 

to be held constant during a gas injection change. Based on the data from the box plots, it was 

demonstrated to be an incorrect assumption. T 

o mimic the physical system that accommodates separator pressures to change with changes in 

gas injection rates, the gas sales and compressor nodes downstream of the separator were set 

to be the end nodes. This resulted in a better correlation between simulation output and physical 

sensor output during gas injection changes.  

 

10 https://oilfieldteam.com/en/a/learning/gas-lift-28072018 

11 Camargo, Edgar & Aguilar, Jose & Rios, Addison & Rivas, Francklin & Aguilar-Martin, Joseph. (2008). 

Nodal analysis-based design for improving gas lift wells production. 

https://oilfieldteam.com/en/a/learning/gas-lift-28072018
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Simulation Input: 

The simulation schematic shown in Figure 10 is Graphic User Interface (GUI) representation of a 

simulation file of the commercial physics-based simulator, such as Ledaflow or Olga.  Each GUI 

based case has an associated input file that can be broadly divided into: 

1.  Static parameters: Inputs that are fixed for the entire run of the simulations, such as the 

well completion and design data, reservoir fluid properties, pipeline and separator 

properties. 

2.  Dynamic parameters: Inputs that can vary as a function of time such as the gas injection 

rate, reservoir pressure, produced gas to liquid ratio and water cut, sales gas back 

pressure, other wells gas.  

3. A system has been set up to write simulation input files based on the parameters obtained 

from a queue of simulations stored on a No-Sql Database such as MongoDB or 

PostgreSQL. The architecture of this system is further elaborated in a subsequent section.  

Simulation inputs are queued on the No-Sql Database based on the type of parameters as 

described in Table 1 below. The parameters described in the “knowns” section in Table 1 are 

directly recorded from field data. These parameters are updated in the simulation queue based 

on timely trends in field data. The value of these parameters is based on the exact operating 

range observed in the processed field data. The “unknowns” correspond to parameters whose 

values are difficult to measure yet have a significant sensitivity.  

These may include static parameters such as the tubing friction factor, or, dynamic parameters 

which vary at a high rate such as reservoir pressure. Since the input values for these parameters 

are unknown, a wide range of possibilities within the bounds of physical guardrails are input for 

these parameters. The “approximations” column in Table 1 refers to parameters that have some 

sample data from the field, but not precise, live, or well-specific data. These parameters can be 

approximated within a smaller range because of their static nature and relative insensitivity. 

The simulation queue consists of combinations of the known, unknown and approximate 

parameters. New simulations are added to the queue based on the rate of change of the field 

data. After a point of time, further simulation may not be necessary on a well, as historical 

simulation may have covered the operating range. The ranges of the unknown parameters also 

narrow down with time as the inverse model provides estimates based on history matching. The 

details of the inverse model are beyond the scope of this paper, and shall be elaborated in 

subsequent publications. 
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 Table 1: Details of simulation parameters and relationship to field data. 

  Types of Simulation Parameters 

 Knowns  Unknowns Approximations 

Field data type Sensor data and 
Metadata 

Field data unavailable Sample field data 
available. Live data 
unavailable 

Simulation input 
type 

Static data and dynamic 
data 

Static data and 
dynamic data 

Static data 

Example sensors ● Injection pressure 
● Gas injection rate 
● Design operating 

pressures 
● Well deviation  
● Sales gas pressure 
● Produced gas to 

oil ratio 
● Produced water 

cut 

● Reservoir 
pressure 

● Productivity 
index 

● Tubing friction 
factor 

● Gas injection 
depth  

● Solution gas 
to oil ratio 

● Location of pipe 
sensors 

● Fluid specific 
gravities 

● Valve pressure 
loss coefficients 

● Less sensitive 
parameters (such 
as ambient 
temperature) 

Range of input Exact operating range as 
observed in field data 

Wide range of input 
based on physical 
possibility 

Narrow range of input 

 

The commercial physics-based simulator employed in the case presented is a transient simulator. 

This implies that some of the input parameters can be entered as a time series, and the response 

to changes in these parameters can be obtained as a time series output. This detail is a key 

component of the simulation setup because the startup of a simulation and the post-processing 

associated with writing outputs to files has a non-trivial overhead on the simulation schedule. To 

reduce the input-output overhead and transition associated delays between simulations, 

dynamic parameters such as Reservoir pressure, Productivity index etc. are stepped through time 

series.  

In the current case, 240 simulation cases were connected together as a time series, and input 

into a simulation queue as a single item. Each item read from the queue generates a commercial 

simulator input file with 240 cases in series. The number of cases per simulation file has been 

heuristically arrived at as an optimum scenario. If a very large number of cases are input per file, 
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that may overload the system memory and output large files, this may lead to a system crash. A 

smaller number of cases input per simulation file results in underutilization of the transient 

capabilities of the simulator, and loss of time in the simulation input-output process.  

Simulation output: 

Each simulation file generates a time series output for the 240 cases as described in the 

simulation input section. The simulation output is updated to the No-Sql database item 

associated with its input. Python scripts are set up to extract the data from a No-Sql database, 

and post-process the time series data and extract individual case outputs corresponding to each 

input. These simulation outputs are matched with field observations to identify simulations 

representing likely operating states of the well. The “unknown” parameter values in simulation 

cases associated with output values irrelevant to field data are disincentivized in further rounds 

of simulation as a part of the inverse modeling process. A rough visual representation of the 

response comparison between field data and simulation is presented in Figure 11.  

 

 

Fig. 11: Response comparison between field measurement and simulation output. 

In the use case presented in this paper the response variables being matched with field data 

include:  

● Oil production rate 

● Wellhead pressure  

● Downhole pressure 

In the inverse modeling process subsequent to the simulation, further constraints are 

implemented on the relationship between simulation output and field responses including the 

historical trends that identify the likelihood of a combination of unknown parameters. Thus, the 

operating state of a well at a given time is estimated through this process, and this knowledge is 

used to generate set-point recommendations.  
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COMPUTATIONAL WORKFLOW: LIVE SENSOR DATA PROCESSING & SIMULATION  

Live sensor data processing: 

Live sensor data processing starts with sensor data being added to an on-cloud source location 

where it can be read by a monitoring workflow system.  The monitoring workflow system copies 

the newly changed files and starts the ETL (extract, transform, load) process.  The system typically 

starts with a scheduling system such as Apache Airflow or Spotify’s Luigi which allow for 

workflows to be written as DAGs (directed acyclic graphs) of tasks.  The scheduler executes these 

tasks on multiple workers following the specified dependencies between tasks and can be 

elastically scaled depending on load. 

The ETL processes act as producers in a common messaging system workflow.  The ETL process 

adds encoded sensor values as messages to a queue to be later read by consumers which store 

the data into a time series database.  Processing queues such as Apache Kafka or Apache Flink 

create distributed durable queues for processing of queued data. Individual queue consumers 

can have purpose developed functionality for persisting sensor streams, creating new values and 

derived or calculated sensors.  These durable queues provide a significant buffer of messages to 

be added if there is a spike in demand and consumers are not able to keep up with producers. 

Eventually, the time series based sensor stream needs to be persisted in a time series aware 

storage system such as OpenTSDB or TimescaleDB.  These time series storage solutions are 

purpose built data stores that store and query temporal data.  Some of these stores can scale to 

millions of operations per second.  Having a time series or temporal query engine becomes critical 

to effectively process sensor streams.  

The design of the system allows for reprocessing of data if needed.  The repeatable 

transformation process allows for better recovery from errors and bugs.  The system is also 

performant.  It is not uncommon to process 600k sensors per minute and the system can also 

scale to higher throughput by adding workers, queue partitions, or database nodes. 

Simulation Workflow 

After data processing, we are ready to use the data to generate simulation cases.  The data is 

analyzed for parameter ranges to explore in simulation.  Simulation cases are partitioned by field 

data and queued in a document database collection.  Cloud instances configured with the 

commercial simulator software and a Python process consume the queue and process cases.  Our 

commercial simulator can be called using a command line interface using a JSON file for input.  

The output from the simulator is saved to the same document with the case and the status is 

marked as completed. 
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A single simulation generates 63 MB of uncompressed data and 467 data points (approximately 

4TB of data per day).  However, our inverse modeling process requires only 40 of those data 

points and we use compression to store the portion of the results needed. A single instance of 

the simulator can process about 15K cases a day (approximately 10 cases a minute).  We use 4 

instances to process 60K cases a day and this process can be scaled up to more instances if 

needed.   

 

CONCLUSION 

The typical processes of the oil and gas industry with respect to data processing, simulation for 

well modeling and artificial lift set point optimization are time-intensive due to their manual 

nature. With the limitations of number of engineers per well12, and with high decline rates13 

contributing to highly transient behavior, continuous optimization is a challenge. Inability to 

update set-points along with changes in well behavior may result in sub-optimal production rates. 

There may be significant economic benefit by optimizing set-points through increase in 

production, and/or reduction in operational costs14.  

By harnessing live data feed, on-cloud processing power in combination with simulation and data 

science tools, it is possible to develop a digital twin for scalable set-point optimization based on 

physics-based models on fields with hundreds of wells.  In the digital twin, there is an interactive 

system between the field data from the physical world and the virtual data from the simulations. 

An overall framework for developing such a digital twin has been presented in this paper. 

The design and implementation details along with the architecture of the system required to 

automate continuous field data processing and a massive scale simulation engine that can 

generate 60,000+ simulations per day has been described. The benefits and challenges in 

minimizing human involvement for automating key components of the system have been 

addressed, while also highlighting the components that benefit from a human-in-the-loop. The 

on-cloud solution also provides an opportunity to scale-up the capacity on an as needed basis by 

multiplying the computational units.  

 

12  https://jpt.spe.org/so-many-wells-so-few-engineersscaling-production-engineering-all-those-shale-

wells 

13  https://www.hartenergy.com/exclusives/why-us-shale-production-declines-are-higher-you-might-

think-188251 

14 Redden, J. David, Sherman, T.A. Glen, and Jack R. Blann. "Optimizing Gas-Lift Systems." Paper presented 

at the Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, Texas, October 1974. doi: 

https://doi.org/10.2118/5150-MS 

https://jpt.spe.org/so-many-wells-so-few-engineersscaling-production-engineering-all-those-shale-wells
https://jpt.spe.org/so-many-wells-so-few-engineersscaling-production-engineering-all-those-shale-wells
https://www.hartenergy.com/exclusives/why-us-shale-production-declines-are-higher-you-might-think-188251
https://www.hartenergy.com/exclusives/why-us-shale-production-declines-are-higher-you-might-think-188251
https://doi.org/10.2118/5150-MS
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Several key decisions were made in terms of choosing the architecture for the system, integration 

with a platform that supports event labeling, factors to consider for templating the simulation 

setup, and facilitating the simulation output to be compared with field data. The importance and 

examples of these decisions were presented in the paper to help in adopting and replicating this 

work. 

The methodology and experience shared in this paper is expected to help the community get one 

step closer to scalable and generalized automated set-point optimization, and also help 

engineers free-up their time for important decision making, rather than spending it on 

templatizable and repetitive tasks such as setting up simulations manually.  

This infrastructure live massive scale simulation coupled with field IIOT sensor data paves the 

way towards the next steps required for closed loop dynamic set-point optimization. These 

include:  Inverse modeling using a combination of machine learning and probabilistic models, set-

point recommendation and evaluation system. These topics need separate individual papers and 

will be presented in future publications.  
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